Thre are 52 weeks in a year
220 pounds - (1 pound)(4*52 weeks)
220 - 208
12.
Unrealistic but okay lol.
Answer:
The answer is 13
Step-by-step explanation:
To find this we have find greatest common factor of 26 and 65 which turns out to be 13
To prove this answer we divide the number of scones to 13
26/13=2 scones of strawberry in each bag
65/13=5 scones of blackberry in each bag
2 and 5 will be found in each of the 13 bags.
Hope it helped.
<h2><em>Answer:</em></h2><h2><em>Answer:x = 7+4√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =1/√x = 2-√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =1/√x = 2-√3Hence √x +1/√x = 2+√3 +2 -√3 = 4</em></h2><h2 />
Answer:
Looks like it
Step-by-step explanation:
A reflection then translation.
To complete the table it is necessary to know the possibilities that the sergeant has to change or remain in an intersection. The probabilities (depending on the box) are:
<h3>How to calculate the probability of intersection change?
</h3>
To know the probability of intersection change, it is necessary to locate the police officer at one of the intersections. Subsequently, count how many possibilities of change you have, for example: 3 possibilities and finally add the possibility of remaining in the intersection as shown below:
- Intersection 3 has 3 possibilities of changing towards intersections 2, 8 and 4. Additionally, it has the possibility of staying at intersection 3, that is, it has 4 possible decisions.
To know the probability we divide the number 1 (because it is only a decision that we have to make) and divide it by the number of possibilities (4).
According to the image we can infer that in some intersections they only have 3, 4 and 5 possibilities, so the probability of change will be different as shown below:
- 1 ÷ 3 = 0.33
- 1 ÷ 4 = 0.25
- 1 ÷ 5 = 0.2
Learn more about probabilities in: brainly.com/question/8069952