Answer:
1. (NH₄)₂S(s) -----> NH₄+(aq) + S²-(aq)
2. Al³+ (aq) + PO₄³+ (aq) ----> AlPO₄ (s)
Explanation:
The dissociation of ammonium sulphide, (NH₄)₂S when dissolved in water is given in the equation below:
(NH₄)₂S(s) -----> NH₄+(aq) + S²-(aq)
However very little S²- ions are present in solution due to the very basic nature of the S²- ion (Kb = 1 x 105).
The ammonium ion being a better proton donor than water, donates a proton to sulphide ion to form hydrosulphide ion which exists in equilibrium with aqueous ammonia.
S²- (aq) + NH₄+ (aq) ⇌ SH- (aq) + NH₃ (aq)
Aqueous solutions of ammonium sulfide are smelly due to the release of hydrogen sulfide and ammonia, hence, their use in making stink bombs.
2. The reaction between aluminium nitrate and sodium phosphatein aqueous solution is a double decomposition reaction whish results in the precipitation of insoluble aluminium phosphate. The equation of the reaction is given below :
Al(NO₃)₃ (aq) + Na₃PO₄ (aq) ----> AlPO₄ (s) + 3 NaNO₃ (aq)
The net ionic equation is given below:
Al³+ (aq) + PO₄³+ (aq) ----> AlPO₄ (s)
Answer:
Hypothesis
Explanation:
The following steps are applicable when we wish to prove a specific fact:
- a hypothesis is made; this is a statement that we provide after some observations and we wish to either prove or deny it;
- multiple experiments are carried out in order to gather significantly substantial amount of data that can be then further analyzed and any tendencies can be noticed;
- based on the data gathered, conclusions are made: we either prove or deny the hypothesis. If hypothesis is proved, it may become a theory over long time.
In the context of this problem, we're at the first step where we make a hypothesis.
<span>the answer is 1 the 4s1 electron........................
</span><span>
</span>
B. At-200
In beta decay the atomic number increases by 1
the solute is the one that dissolves meaning its particles are separating into the solvent, and the solvent is the one that dissolves the other substance.