Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
Answer:
S = 21.92 %
F = 78.08 %
Explanation:
To find the percent composition of each element in SF6, we must find the molar mass of SF6 first.
Molar mass of SF6 = 32 + 19(6)
= 32 + 114
= 146g/mol
mass of Sulphur (S) in SF6 = 32g
mass of Fluorine (F) in SF6 = 114g
Percent composition = mass of element/molar mass of compound × 100
- % composition of S = 32/146 × 100 = 21.92%.
- % composition of F = 114/146 × 100 = 78.08%.
4. the rock cycle is the layering of eroded sediments
Answer:
Explanation:
Approx.
425
⋅
g
Explanation:
2
A
l
(
s
)
+
3
C
l
2
(
g
)
→
2
A
l
C
l
3
(
s
)
You have given a stoichiometrically balanced equation, so bravo.
The equation explicitly tells us that
54
⋅
g
of aluminum metal reacts with
6
×
35.45
⋅
g
C
l
2
gas to give
266.7
⋅
g
of
aluminum trichloride
hope this helps
Answer: The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century. It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation.
Explanation:
Hope this helps. :)