Answer:
1. 12.6 moles
2. 8.95 moles
3. 2A + 5B → 3C
4. 48 moles
Explanation:
1. 2Fe + 3Cl₂ → 2FeCl₃
We assume the chlorine in excess. Ratio is 2:2
2 moles of Fe, can produce 2 moles of chloride
12.6 moles of Fe will produce 12.6 moles of chloride.
2. 2Fe + 3Cl₂ → 2FeCl₃
For the same reaction, first of all we need to convert the mass to moles:
500 g . 1mol / 55.85 g = 8.95 mol
As ratio is 2:2, the moles we have are the same, that the produced
4. The reaction for the combustion is:
2C₂H₆ (g) + 7O₂ (g) → 4CO₂ (g) + 6H₂O (l)
We assume the oxygen in excess.
Ratio is 2:6, so 2 mol of ethane produce 6 moles of water
Therefore 16 moles of ethane may produce (16 .6) / 2 = 48 moles
C. carbon
sodium is an
oxygen is o
cl is chlorine
Energy, Temperature, and Changes of State
Matter either loses or absorbs energy when it changes from one state to another. For example, when matter changes from a liquid to a solid, it loses energy. The opposite happens when matter changes from a solid to a liquid.
Answer: The reaction between bromine gas and fluorine gas to create bromine monofluoride gas has reached equilibrium. What is the effect of adding more bromine gas to the reaction chamber?
More fluorine gas will be produced.
More bromine gas will be produced.
More bromine monofluoride gas will be produced.
Less bromine monofluoride gas will be produced.
I think it is more bromine monofluoride will be produce
Explanation:
A reaction is exothermic if Δ<em>H</em> (or
in some textbooks) is negative:
- H₂ + Br → 2 HBr, ΔH < 0.
- CH₄ + 2 O₂ → CO₂ + 2 H₂O, ΔH < 0.
A reaction is endothermic if Δ<em>H</em> is positive:
- 2 NH₃ → N₂ + 3 H₂, ΔH > 0.
- 2 HCl → H₂ + Cl₂ ΔH > 0.
<h3>Explanation</h3>
The enthalpy of a system is the sum of its internal energy. ΔH < 0 indicates that the reactants lose internal energy in the reaction. Energy conserves, and those internal energies must have converted to some other form of energy. They typically end up as thermal energy. The reaction will release heat since it is exothermic.
Similarly, ΔH > 0 indicates that the reactants gains internal energy in the reaction. Energy conserves. As a result, the reaction must have gained energy from its surroundings. The reaction will be endothermic since it absorbs heat.