Answer:
F = - 3.53 10⁵ N
Explanation:
This problem must be solved using the relationship between momentum and the amount of movement.
I = F t = Δp
To find the time we use that the average speed in the contact is constant (v = 600m / s), let's use the uniform movement ratio
v = d / t
t = d / v
Reduce SI system
m = 26 g ( 1 kg/1000g) = 26 10⁻³ kg
d = 50 mm ( 1m/ 1000 mm) = 50 10⁻³ m
Let's calculate
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
With this value we use the momentum and momentum relationship
F t = m v - m v₀
As the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26 10⁻³ (-500 - 630) / 8.33 10⁻⁵
F = - 3.53 10⁵ N
The negative sign indicates that the force is exerted against the bullet
Are you referring to the fact that water is a compound while hydrogen is an element? If I'm wrong just comment and clarify and I can edit it, I don't even know what kind of unit you're in. :)
I attached a Diagram for this problem.
We star considering the system is in equlibrium, so
Fm makes
with vertical
Fm makes 70 with vertical
Applying summatory in X we have,


We know that W is equal to

Substituting,




<em>For the second part we know that the reaction force Fj on deltoid Muscle is equal to Fm, We can assume also that</em> 
the answer should be:
When the buoyant force is equal to the force of gravity
Explanation:
It is given that The Moon's center is 3.9x10⁸ m from Earth's center. The moon 1.5x10⁸ km from the Sun's center. We need to find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon.
The gravitational force is given by :

It means 
So,

r₁ = 3.9x10⁸ km
r₂= 1.5x10⁸ km
So,

Hence, the ratio of the gravitational forces exerted by Earth and the Sun on the Moon is 5:13.