Since we have , v=f×lambda (wavelength). Where v equals 350m/s and wavelength equals 3.80. so it will become f = v/lambda=350/3.80=92.1052Hz
Particles vibrate parallel to the direction the sound travels. It's a longitudinal wave.
Answer:

Explanation:
For n-=1 state hydrogen energy level is split into three componets in the presence of external magnetic field. The energies are,
,
,

Here, E is the energy in the absence of electric field.
And
are the highest and the lowest energies.
The difference of these energies

is known as Bohr's magneton.
B=2.5 T,
Therefore,

Now,

Therefore, the energy difference between highest and lowest energy levels in presence of magnetic field is 
Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
Answer:
6 meters away
Explanation:
6*1.4= 8.4 which is pretty close