Answer:
Quadratic
Step-by-step explanation:
Linear has a constant growth and exponential cannot be negative.
So distribute using distributive property
a(b+c)=ab+ac so
split it up
(5x^2+4x-4)(4x^3-2x+6)=(5x^2)(4x^3-2x+6)+(4x)(4x^3-2x+6)+(-4)(4x^3-2x+6)=[(5x^2)(4x^3)+(5x^2)(-2x)+(5x^2)(6)]+[(4x)(4x^3)+(4x)(-2x)+(4x)(6)]+[(-4)(4x^3)+(-4)(-2x)+(-4)(6)]=(20x^5)+(-10x^3)+(30x^2)+(16x^4)+(-8x^2)+(24x)+(-16x^3)+(8x)+(-24)
group like terms
[20x^5]+[16x^4]+[-10x^3-16x^3]+[30x^2-8x^2]+[24x+8x]+[-24]=20x^5+16x^4-26x^3+22x^2+32x-24
the asnwer is 20x^5+16x^4-26x^3+22x^2+32x-24
Answer:
36/5
Step-by-step explanation:
x/3 + 6 -2x = -6
multiply the whole equation by 3 to get rid of the denominator of the first x term.
x+18-6x = -18
move x terms to one side and numerical terms to the other, subtract 18 from both sides in this case
x+18-6x-18=-18-18
x-6x = -36
simplify
-5x = -36
divide both sides by -5 to isolate x
x = -36/-5
=36/5
Answer:
x=−2
Step-by-step explanation: Step 1: Simplify both sides of the equation.
3(x−5)−3=5(x−2)+2x
(3)(x)+(3)(−5)+−3=(5)(x)+(5)(−2)+2x(Distribute)
3x+−15+−3=5x+−10+2x
(3x)+(−15+−3)=(5x+2x)+(−10)(Combine Like Terms)
3x+−18=7x+−10
3x−18=7x−10
Step 2: Subtract 7x from both sides.
3x−18−7x=7x−10−7x
−4x−18=−10
Step 3: Add 18 to both sides.
−4x−18+18=−10+18
−4x=8
Step 4: Divide both sides by -4.
−4x
−4
=
8
−4
x=−2
Answer:
-6
Step-by-step explanation:
Add 2x-15 to both sides to get 2x=-12 or x = -6.