C is the answer hope this helps.
The Present value of an annuity is given by PV = P(1 - (1 + r/t)^-nt)/(r/t)
where: P is the monthly payment, r is the annual rate = 7% = 0.07, t is the number of periods in one year = 12 and n is the number of years = 3.
18,000 - 6,098 = P(1 - (1 + 0.07/12)^-(3 x 12)) / (0.07/12)
11,902 = P(1 - (1 + 0.07/12)^-36) / (0.07/12)
P = 0.07(11,902) / 12(1 - (1 + 0.07/12)^-36) = 367.50
Therefore, monthly payment = $367.50
Hi there!
To solve this problem, we need to set up two equations and use the system of equations to solve.
Let x be the first number.
Let y be the second number.
(x + y) ÷ 2 = 34
x = 3y
Now, we can use substitution to solve.
(3y + y) ÷ 2 = 34
4y ÷ 2 = 34
2y = 34
y = 17
Now, we plug the value of y in the equation to solve for x.
x = 3*17
x = 51
Hope this helps!
Answer:6.1638 7.69 8.18.04
Step-by-step explanation:
Answer:
I think it would be the last one