Answer:
d.
Step-by-step explanation:
To convert a root to a fraction in the exponent, remember this rule:
![\sqrt[n]{a^{m}}=a^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)
The index becomes the denominator in the fraction. (The index is the little number in front of the root, "n".) The original exponent remains in the numerator.
In this question, the index is 4.
The index is applied to every base in the equation under the root. The bases are 16, 'x' and 'y'.
![\sqrt[4]{16x^{15}y^{17}} = (\sqrt[4]{16})(\sqrt[4]{x^{15}})(\sqrt[4]{y^{17}}) = (2)(x^{\frac{15}{4}}})(y^{\frac{17}{4}}) = 2x^{\frac{15}{4}}}y^{\frac{17}{4}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16x%5E%7B15%7Dy%5E%7B17%7D%7D%20%3D%20%28%5Csqrt%5B4%5D%7B16%7D%29%28%5Csqrt%5B4%5D%7Bx%5E%7B15%7D%7D%29%28%5Csqrt%5B4%5D%7By%5E%7B17%7D%7D%29%20%3D%20%282%29%28x%5E%7B%5Cfrac%7B15%7D%7B4%7D%7D%7D%29%28y%5E%7B%5Cfrac%7B17%7D%7B4%7D%7D%29%20%3D%202x%5E%7B%5Cfrac%7B15%7D%7B4%7D%7D%7Dy%5E%7B%5Cfrac%7B17%7D%7B4%7D%7D)
To find the quad root of 16, input this into your calculator. Since 2⁴ = 16,
= 2.
For the "x" and "y" bases, use the rule for converting roots to exponent fractions. The index, 4, becomes the denominator in each fraction.

The answer is 132.665 but rounded it is 132.7
Answer:
A function means that we get one input and one output. In this example that means for every x-value that we have, we only have one y-value.
Looking at the first option, we can see that there is no x-value that has more than one y-value which means that it is a function.
The rest of the options are seen with at least two values for one x-value in one of the points. Therefore, they wouldn't be considered a function leaving us with only option A as the solution.
Yes your answer is correct