Answer:
Step-by-step explanation:
False, for example, if the scale factor is 2, the scale drawing would still be smaller because it would be twice as smaller than the actual object.
The largest possible volume of the given box is; 96.28 ft³
<h3>How to maximize volume of a box?</h3>
Let b be the length and the width of the base (length and width are the same since the base is square).
Let h be the height of the box.
The surface area of the box is;
S = b² + 4bh
We are given S = 100 ft². Thus;
b² + 4bh = 100
h = (100 - b²)/4b
Volume of the box in terms of b will be;
V(b) = b²h = b² * (100 - b²)/4b
V(b) = 25b - b³/4
The volume is maximum when dV/db = 0. Thus;
dV/db = 25 - 3b²/4
25 - 3b²/4 = 0
√(100/3) = b
b = 5.77 ft
Thus;
h = (100 - (√(100/3)²)/4(5.77)
h = 2.8885 ft
Thus;
Largest volume = [√(100/3)]² * 2.8885
Largest Volume = 96.28 ft³
Read more about Maximizing Volume at; brainly.com/question/1869299
#SPJ1
3x+y=17
=> 3x=17-y
Again, x+3y=-1
=> 3y= -1-x
now, 3x+3y= (17-y)+(-1-x)
= 17-y-1-x
= 16-x-y
Answer:
Step-by-step explanation:
