Answer:
Explanation:
PV / RT = n , n is number of moles
Total pressure = 96400 Pa
vapour pressure = 23.8 mm of Hg
= .0238 x 13.6 x 10³ x 10 Pa = 3236.8 Pa
Pressure of hydrogen gas P = 96400 - 3236.8
= 93163.2 Pa
n = 93163.2 x .0251 / 8.31 x 298
= .944 moles of hydrogen gas is produced
moles of magnesium reacted = .944
grams of magnesium reacted = .944 x 24 = 22.66 grams .
The percent yield formula is % yield= (actual yield/theoretical yield) x 100
34.0g/50.0g= .68 x 100 = 68.0% (theres three sig. figs.)
Answer:
(a) Pair 1: H₂S and HS⁻
Pair 2: NH₃ and NH₄⁺
(b) Pair 1: HSO₄⁻ and SO₄⁻
Pair 2: NH₃ and NH₄⁺
(c) Pair 1: HBr and Br⁻
Pair 2: CH₃O⁻ and CH₃OH
(d) Pair 1: HNO₃ and NO₃⁻
Pair 2: H₃O⁺
Explanation:
When an acid loses its proton (H⁺), a conjugate base is produced.
When a base accepts a proton (H⁺), it forms a conjugate acid.
(a) H₂S is an acid. When it loses a proton, it forms the conjugate base HS⁻.
NH₃ is a base. When NH₃ gains a proton, it forms the conjugate acid NH₄⁺
(b) The acid HSO₄⁻ loses a H⁺ ion and forms the conjugate base SO₄²⁻.
The base NH₃ accepts a H⁺ ion to form the conjugate acid NH₄⁺.
(c) HBr is an acid. When loses the H⁺ ion, it forms the conjugate base Br⁻.
CH₃O⁻ accepts a H⁺ ion to form the conjugate acid CH₃OH.
(d) HNO₃ loses a proton to form the conjugate base NO₃⁻.
H₂O gains a proton to form the conjugate acid H₃O⁺.
Answer:
A. Interactions between the ions of sodium chloride (solute-solute interactions).
B. Interactions involving dipole-dipole attractions (solvent-solvent interactions).
C. Interactions formed during hydration (solute-solvent interactions).
D. Interactions involving ion-ion attractions (solute-solute interactions).
E. Interactions associated with an exothermic process during the dissolution of sodium chloride (solute-solvent interactions).
F. Interactions between the water molecules (solvent-solvent interactions).
G. Interactions formed between the sodium ions and the oxygen atoms of water molecules (solute-solvent interactions).
Explanation:
The solution process takes place in three distinct steps:
- Step 1 is the <u>separation of solvent molecules.
</u>
- Step 2 entails the <u>separation of solute molecules.</u>
These steps require energy input to break attractive intermolecular forces; therefore, <u>they are endothermic</u>.
- Step 3 refers to the <u>mixing of solvent and solute molecules.</u> This process can be <u>exothermic or endothermic</u>.
If the solute-solvent attraction is stronger than the solvent-solvent attraction and solute-solute attraction, the solution process is favorable, or exothermic (ΔHsoln < 0). If the solute-solvent interaction is weaker than the solvent-solvent and solute-solute interactions, then the solution process is endothermic (ΔHsoln > 0).
In the dissolution of sodium chloride, this process is exothermic.
11 LIMITING react this is the answer