Answer:
-608KJ/mol
Explanation:
3 C2H2(g) -> C6H6(g)
ΔHrxn = ΔHproduct - ΔHreactant
ΔHrxn= ΔHC6H6 - 3ΔHC2H2
ΔHrxn = 83 - 3(230)
ΔHrxn = -608
It depends on what type of graph you have. The easiest would be using a H-T diagram. Enthalpy of vaporization is the physical change from liquid to vapor. It occurs at a constant pressure and a constant temperature. As shown in the picture, 1 point is drawn on the subcooled liquid, and another point of the saturated vapor isothermal line. Now, the difference between those two points is the value for the enthalpy of vaporization of water.
Answer:
C
Explanation:
Large chlorine atoms can not fit within the atoms of boron
621.4L
Explanation:
Given parameters:
Initial volume = 547L
Initial temperature = 331K
Final temperature = 376K
Unknown:
Final volume = ?
Solution:
The appropriate gas law to use is the Charles's law.
The Charles's law shows the relationship between the volume and temperature of a gas under constant pressure.
The law states that "The volume of a fixed of a gas varies directly as its absolute temperature if the pressure is constant".
Mathematically;

V₁ is the initial volume
T₁ is the initial temperature
V₂ is the final volume
T₂ is the final temperature
Since the unknown is the final volume, we make it the subject of the expression;
V₂ = 
V₂ = 621.4L
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
Answer:
872.28 kJ/mol
Explanation:
The heat released is:
ΔH = C*ΔT
where ΔH is the heat of combustion, C is the heat capacity of the bomb plus water, and ΔT is the rise of temperature. Replacing with data:
ΔH = 9.47*5.72 = 54.1684kJ
A quantity of 1.922 g of methanol in moles are:
moles = mass / molar mass
moles = 1.992/32.04 = 0.0621 mol
Then the molar heat of combustion of methanol is:
ΔH/moles = 54.1684/0.0621 = 872.28 kJ/mol