The empirical formula : CH₃
<h3>Further explanation</h3>
Given
2.5 g sample
2.002 g Carbon
Required
The empirical formula
Solution
Mass of Hydrogen :
= 2.5 - 2.002
= 0.498
Mol ratio C : H :
C : 2.002/12 = 0.167
H : 0.498/1 = 0.498
Divide by 0.167 :
C : H = 1 : 3
Answer:
0.805 M.
Explanation:
Hello!
In this case, since the molarity of a solution is computing by dividing the moles of solute over the volume of solution in liters (M=n/V), for 15.0 g of potassium chloride (74.55 g/mol) we compute the corresponding moles:

Next, since the volume is 0.2500 in liters, the molarity turns out:

Best regards!
In an acidic solution, the concentration of H+ is greater than the concentration of OH-. The pH will be less than 7.
In a basic solution, the concentration of OH- is greater than the concentration of H+. The pH will be greater than 7.
In a neutral solution, the concentration of H+ ions to OH-ions will be equal, and will therefore have a pH of 7. (This is due to water autoionization, which we usually ignore because it is small in other circumstances.)
Answer:
Potassium cation = K⁺²
Explanation:
The metal cation in K₂SO₄ is K⁺². While the anion is SO₄²⁻.
All the metals have tendency to lose the electrons and form cation. In given compound the metal is potassium so it should form the cation. The overall compound is neutral.
The charge on sulfate is -2. While the oxidation state of potassium is +1. So in order to make compound overall neutral there should be two potassium cation so that potassium becomes +2 and cancel the -2 charge on sulfate and make the charge on compound zero.
2K⁺² , SO₄²⁻
K₂SO₄
The first step in the two-step process of making a solution is the breakdown of the solute source into Atomic particles
for a solution to break the solute must be dissociated and break into the atomic particles
so correct option is D
hope it helps