Answer:
a) Fermi level = 600 electron-volts
b) 
Explanation:
Given data:
length of one-dimensional crystal = 10 um
Lattice spacing = 0.1 nm
A) Determine the Fermi level assuming one electron per atom
Total length = 10 <em>u</em>m
Interatomic separation of a = 0.1 nm
in this case the Atom has one electron therefore the number of electrons = 10^5 and the number of states Ns = gsN = 2 * 10^5 ( attached below is some part of the solution )
hence : Fermi level = 600 electron-volts
B) Determine the density of states as a function of electron energy
attached below is the detailed solution
Answer:



Explanation:
From the question we are told that
Electric field of intensity 
Rectangle parameter Width
Length 
Angle to the normal 
Generally the equation for Electric flux at parallel to the yz plane
is mathematically given by



Generally the equation for Electric flux at parallel to xy plane
is mathematically given by



Generally the equation for Electric flux at angle 30 to x plane
is mathematically given by




If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Placing elements into columns, groups, rows and periods that share certain properties. properties such as gas, solid and liquid determine an element physical state at room temperature.
Sound waves can be used in a similar way to "see" things. After turning on a sound source, we can look at the pattern of reflected sound waves that bounce back to us. Our own ears and brain don't process sound into mental pictures.