Answer:
D. Molecules of a gas slow down and change to a liquid state.
Explanation:
- Condensation refers to a process by which a gas changes from gaseous state to liquid state. For example, water vapor changes to from the state of being a gas to liquid state water.
- Condensation is the opposite of evaporation and occurs when gaseous particles slow down and change into liquid state.
- Heat energy is lost during condensation and gaseous molecules lose kinetic energy making them to slow down and thus changing to liquid state,
The current in the circuit is 5 A
Explanation:
The intensity of current is given by the equation:

where
I is the current
q is the amount of charge passing through a given point of the circuit in a time interval of t
For the cell in this problem, we have
q = 150 C is the charge
t = 30 s is the time interval
Substituting into the equation, we f ind

Learn more about current:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

According to the physical fact that a<span>mplitude and energy have proportional values, this statement is definitely FALSE. Pay attention on the words ''</span><span> inversely related'', that will be the main point which will make it absolutely clear. Hope you will find this answer helpful! Regards.</span>
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired