The answer is B. Bye because B those study speed.
<span>The moment of inertia of the large sphere will be twice that of the smaller sphere.
The formula for the moment of inertia for a solid sphere is:
I = (2/5)mr^2
where
I = moment of inertia
m = mass
r = radius
Since both spheres have the same diameter, they also have the same radius, so the only change is their mass. And the moment of inertia is directly proportional to their mass as shown by the above formula. So the sphere with twice the mass will have twice the moment of inertia, or 2 times.</span>
Answer:
9.934 m/s²
Explanation:
Given:
Initial speed of the Bugatti Veyron Super Sport = 0 mi/h
Final speed of the Bugatti Veyron Super Sport = 60 mi/h
Now,
1 mi/h = 0.44704 m / s
thus,
60 mi/h = 0.44704 × 60 = 26.8224 m/s
Time = 2.70 m/s
Now,
The acceleration (a) is given as:
thus,
or
a = 9.934 m/s²
Answer:
4086 J
Explanation:
The potential energy is transformed to kinetic energy less the frictional energy. Potential energy= mgh where m represent mass, g is acceleration due to gravity and h is the height of cliff
Since we have force of air resistance, work done due to air resistance will be product of force and distance

Substituting 10 Kg for m, 9.81 for g and 60 m for F then the kinetic energy at the bottom will be
KE= 10*9.81*60- (30*60)=4086 J
Answer: 27.21 V
Explanation:
The <u>electric potential</u>
due to a point charge is expressed as:

Where:
is the <u>electric constant</u>
is the <u>electric charge of the hydrogen nucleus</u>, which is positive
is the <u>distance</u>
Rewritting the equation with the known values:

Finally: