16/25 = 0.64 = 64%
Another way to do it is to multiply top and bottom by 4
16/25 = (16*4)/(25*4) = 64/100 = 64%
Either way, the answer is 64%
Answer:
(a) 315°
(b) 3°
(c) 238°
Step-by-step explanation:
Bearings are measured clockwise from north. The triangle described is illustrated in the attachment.
<h3>(a)</h3>
The bearing of P from R is 180° different from the bearing of R from P it will be ...
135° +180° = 315° . . . . bearing of P from R
__
<h3>(b)</h3>
The bearing of Q from R is 48° more than the bearing of P from R, so is ...
315° +48° = 363°, or 3° . . . . bearing of Q from R
__
<h3>(c)</h3>
The angle QPR has a value that makes the sum of angles in the triangle equal to 180°. It is ...
180° -48° -55° = 77°
The bearing of Q from P is 77° less than the bearing of R from P, so is ...
135° -77° = 58°
As above, the reverse bearing from Q to P is ...
58° +180° = 238° . . . . bearing of P from Q
Using product rule;
f(x)=(1+6x²)(x-x²)
f'(x)=(12x)(x-x²) + (1-2x)(1+6x²) = 12x² -12x³ +1 +6x² -2x -12x³ = -24x³ +18x² -2x +1
Solving the bracket first;
f(x)=(1+6x²)(x-x²) = x -x² +6x³ -6x^4
f'(x)= 1 -2x +18x² -24x³ = -24x³ +18x² -2x +1
Note that f(x) as given is <em>not</em> invertible. By definition of inverse function,


which is a cubic polynomial in
with three distinct roots, so we could have three possible inverses, each valid over a subset of the domain of f(x).
Choose one of these inverses by restricting the domain of f(x) accordingly. Since a polynomial is monotonic between its extrema, we can determine where f(x) has its critical/turning points, then split the real line at these points.
f'(x) = 3x² - 1 = 0 ⇒ x = ±1/√3
So, we have three subsets over which f(x) can be considered invertible.
• (-∞, -1/√3)
• (-1/√3, 1/√3)
• (1/√3, ∞)
By the inverse function theorem,

where f(a) = b.
Solve f(x) = 2 for x :
x³ - x + 2 = 2
x³ - x = 0
x (x² - 1) = 0
x (x - 1) (x + 1) = 0
x = 0 or x = 1 or x = -1
Then
can be one of
• 1/f'(-1) = 1/2, if we restrict to (-∞, -1/√3);
• 1/f'(0) = -1, if we restrict to (-1/√3, 1/√3); or
• 1/f'(1) = 1/2, if we restrict to (1/√3, ∞)