Sequence: 5/2, 5/4, 5/8, 5/16
a8=?
a1=5/2
a2=5/4
a3=5/8
a4=5/16
a2/a1=(5/4)/(5/2)=(5/4)*(2/5)=(5*2)/(4*5)=2/4=1/2
a3/a2=(5/8)/(5/4)=(5/8)*(4/5)=(5*4)/(8*5)=4/8=1/2
a4/a3=(5/16)/(5/8)=(5/16)*(8/5)=(5*8)/(16*5)=8/16=1/2
Ratio: r=a2/a1=a3/a2=a4/a3→r=1/2
an=a1*r^(n-1)
a1=5/2, r=1/2
an=(5/2)*(1/2)^(n-1)
an=(5/2)*[1^(n-1)/2^(n-1)]
an=(5/2)*[1/2^(n-1)]
an=(5*1)/[2*2^(n-1)]
an=5/2^(1+n-1)
an=5/2^n
n=8→a8=5/2^8
a8=5/256
Answers:
The formula for the general term or nth term for the sequence is an=5/2^n
a8=5/256
Answer:
24 minutes
Step-by-step explanation:
The Dimensions of the wall are given as:
8ft × 5ft = 40ft² or 40 square feet
Step-by-step explanation:
The perimeter of a rectangle is 30 inches. If its length is three times its width, find the dimensions. 30 inches=2(L+W) Divide each side by 2. 15 inches=L+W Substitute for L.
Answer:

Step-by-step explanation:-
To find the midpoint, the equation we use is:-

x1 = 10
x2 = 5
y1 = 7
y2 = 4
Substituting the values in the equation, we get:-

Coordinates of the midpoint---> 
Exponential growth has the form:
F=Ir^t, F=final amount, I=initial amount, r=rate, t=time.
First let's solve for the rate, r, using the points provided...
37325/34560=(Ir^2)/(Ir^1)
r≈1.08
Now find the initial amount...
34560=I(1.08)^1
I=32000 so now we have the entire equation, using x and y...
y=32000(1.08)^x