Answer:
B) Because the Space Station is constantly in free-fall around the Earth.
Explanation:
Anything that is falling experiences an upward force on them. For example when a person is going down in a lift they will experience something that is pushing them upwards. This happens due to the fact that the total acceleration the body is feeling is less than the acceleration due to graviity.
The force on a body which is falling is

Where,
m = Mass of object
g = acceleration due to gravity
a = acceleration the object is experiencing.
a = g. So, the force becomes zero and the object experiences weightlessness.
Hence, the astronauts in the space station experience weightlessness due to fact that the Space Station is constantly in free-fall around the Earth.
To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is

Through this equation we can find the mass of the Planet in function of the distance, therefore



The orbital velocity is





The time period of revolution is,




Therefore the orbital period of the satellite is closes to 1 hour and 12 min
Wearing rubber or stay away from water or/ and a conductor
While ice melts, it remains at 0 °C, and the liquid water that is formed with the latent heat of fusion is also at 0 °C. The heat of fusion for water at 0 °C is approximately 334 joules per gram, and the heat of vaporization at 100 °C is about 2,230 joules per gram. So it will be C