Answer/Step-by-step explanation:
The equation of the line that passes through the two points would be correct if each point, when substituted into the equation, satisfy the equation.
This is what I mean:
Given the equation of the line, y = 2x - 5, and the two points (-2, -9) and (3, 1):
For the first point, substitute x = -2, and y = -9 into y = 2x - 5.
Thus:
-9 = 2(-2) - 5
-9 = -4 - 5
-9 = -9 (this is true). It means the line runs through the point (-2, -9)
For the second point, substitute x = 3, and y = 1 into y = 2x - 5
This:
1 = 2(3) - 5
1 = 6 - 5
1 = 1 (this is true). This also means the point, (3, 1) is also a point that the equation runs across.
Answer:

Step-by-step explanation:
we know that
The area of the shaded region is equal to the area of the sector minus the area of the triangle
step 1
Find the area of the circle
the area of the circle is equal to

we have

substitute


step 2
Find the area of the sector
we know that
The area of the circle subtends a central angle of 360 degrees
so
by proportion find out the area of a sector by a central angle of 72 degrees

step 3
Find the area of triangle
The area of the triangle is equal to

step 4
Find the area of the shaded region
Subtract the area of the triangle from the area of the sector

1/3 of remained 2/3 is 2/9. We’ve used 1/3+2/9 = 3/9+2/9 = 5/9. So we’ve used 5/9 and we have 4/9 of the paint
Step-by-step explanation:
Hey, there!!
Here, one point is A(10,8) and P(8,5) is the midpoint.
Let B(x,y) be the another end point.
Now,
Using midpoint formulae,


Since they are equal,equating with their corresponding elements we get,

or, 16 = 10 + x
or, x=16-10
Therefore, x = 6
Now,

or, 10 = 8 + y
or, y = 2
Therefore, The coordinates of another point are B(6,2)
<em><u>Hope it helps</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
A. 2 distinct roots.
Step-by-step explanation:
2x^2 + 8x + 3 = 0
Finding the discriminant:
b^2 - 4ac = 8^2 - 4 * 2 * 3
= 64 - 24
= 40
The discriminant is positive but not a perfect square
So there are 2 distinct ,real, irrational roots.