<h3>Answer:</h3>
Equation of the ellipse = 3x² + 5y² = 32
<h3>Step-by-step explanation:</h3>
<h2>Given:</h2>
- The centre of the ellipse is at the origin and the X axis is the major axis
- It passes through the points (-3, 1) and (2, -2)
<h2>To Find:</h2>
- The equation of the ellipse
<h2>Solution:</h2>
The equation of an ellipse is given by,

Given that the ellipse passes through the point (-3, 1)
Hence,

Cross multiplying we get,
- 9b² + a² = 1 ²× a²b²
- a²b² = 9b² + a²
Multiply by 4 on both sides,
- 4a²b² = 36b² + 4a²------(1)
Also by given the ellipse passes through the point (2, -2)
Substituting this,

Cross multiply,
- 4b² + 4a² = 1 × a²b²
- a²b² = 4b² + 4a²-------(2)
Subtracting equations 2 and 1,
- 3a²b² = 32b²
- 3a² = 32
- a² = 32/3----(3)
Substituting in 2,
- 32/3 × b² = 4b² + 4 × 32/3
- 32/3 b² = 4b² + 128/3
- 32/3 b² = (12b² + 128)/3
- 32b² = 12b² + 128
- 20b² = 128
- b² = 128/20 = 32/5
Substituting the values in the equation for ellipse,


Multiplying whole equation by 32 we get,
3x² + 5y² = 32
<h3>Hence equation of the ellipse is 3x² + 5y² = 32</h3>
Answer:
12x/2 or 52/2
Step-by-step explanation:
Ok, perimeter is length+length+width+width. 12x/2 and 52/2 could are probably the answers.
Answer:
domain (-4,infinity) range (negative infinity, infinity)
Step-by-step explanation:
The domain is the x axis. the x axis starts at -4 and keeps going meaning it goes to infinity. the range is the y axis. the range has no determined starting point or end point meaning it goes to negative infinity and positive infinity
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ = 152.5
For the alternative hypothesis,
µ ≠ 152.5
This is a two tailed test.
Since no population standard deviation is given, the distribution is a student's t.
Since n = 231
Degrees of freedom, df = n - 1 = 231 - 1 = 230
t = (x - µ)/(s/√n)
Where
x = sample mean = 148.9
µ = population mean = 152.5
s = samples standard deviation = 27.4
t = (148.9 - 152.5)/(27.4/√231) = - 2
We would determine the p value using the t test calculator. It becomes
p = 0.047
Since alpha, 0.05 > thanthere sufficient evidence to conclude that the self-efficacy of adults who have experienced childhood trauma differs from that in the general population of individuals the p value, 0.047, then we would reject the null hypothesis. Therefore, At a 5% level of significance, there is sufficient evidence to conclude that the self-efficacy of adults who have experienced childhood trauma differs from that in the general population of individuals