1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
12

Q.6. The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes

Mathematics
1 answer:
azamat3 years ago
8 0

<h3>Answer:</h3>

Equation of the ellipse = 3x² + 5y² = 32

<h3>Step-by-step explanation:</h3>

<h2>Given:</h2>

  • The centre of the ellipse is at the origin and the X axis is the major axis

  • It passes through the points (-3, 1) and (2, -2)

<h2>To Find:</h2>

  • The equation of the ellipse

<h2>Solution:</h2>

The equation of an ellipse is given by,

\sf \dfrac{x^2}{a^2} +\dfrac{y^2}{b^2} =1

Given that the ellipse passes through the point (-3, 1)

Hence,

\sf \dfrac{(-3)^2}{a^2} +\dfrac{1^2}{b^2} =1

Cross multiplying we get,

  • 9b² + a² = 1 ²× a²b²
  • a²b² = 9b² + a²

Multiply by 4 on both sides,

  • 4a²b² = 36b² + 4a²------(1)

Also by given the ellipse passes through the point (2, -2)

Substituting this,

\sf \dfrac{2^2}{a^2} +\dfrac{(-2)^2}{b^2} =1

Cross multiply,

  • 4b² + 4a² = 1 × a²b²
  • a²b² = 4b² + 4a²-------(2)

Subtracting equations 2 and 1,

  • 3a²b² = 32b²
  • 3a² = 32
  • a² = 32/3----(3)

Substituting in 2,

  • 32/3 × b² = 4b² + 4 × 32/3
  • 32/3 b² = 4b² + 128/3
  • 32/3 b² = (12b² + 128)/3
  • 32b² = 12b² + 128
  • 20b² = 128
  • b² = 128/20 = 32/5

Substituting the values in the equation for ellipse,

\sf \dfrac{x^2}{32/3} +\dfrac{y^2}{32/5} =1

\sf \dfrac{3x^2}{32} +\dfrac{5y^2}{32} =1

Multiplying whole equation by 32 we get,

3x² + 5y² = 32

<h3>Hence equation of the ellipse is 3x² + 5y² = 32</h3>
You might be interested in
8 sided die probability of rolling odd number
Elena L [17]

Answer: 4 I think . not sure

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
If 13cos theta -5=0 find sin theta +cos theta / sin theta -cos theta​
Ivahew [28]

Step-by-step explanation:

<h3>Need to FinD :</h3>

  • We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

\red{\frak{Given}} \begin{cases} & \sf {13\ cos \theta\ -\ 5\ =\ 0\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \big\lgroup Can\ also\ be\ written\ as \big\rgroup} \\ & \sf {cos \theta\ =\ {\footnotesize{\dfrac{5}{13}}}} \end{cases}

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.

Where,

  • PQ = Opposite side
  • QR = Adjacent side
  • RP = Hypotenuse
  • ∠Q = 90°
  • ∠C = θ

As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

\rightarrow {\underline{\boxed{\red{\sf{cos \theta\ =\ \dfrac{Adjacent\ side}{Hypotenuse}}}}}}

Since, we know that,

  • cosθ = 5/13
  • QR (Adjacent side) = 5
  • RP (Hypotenuse) = 13

So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.

Therefore,

\red \bigstar {\underline{\underline{\pmb{\sf{According\ to\ Question:-}}}}}

\rule{200}{3}

\sf \dashrightarrow {(PQ)^2\ +\ (QR)^2\ =\ (RP)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ (5)^2\ =\ (13)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ 25\ =\ 169} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 169\ -\ 25} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 144} \\ \\ \\ \sf \dashrightarrow {PQ\ =\ \sqrt{144}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{PQ\ (Opposite\ side)\ =\ 12}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

\rightarrow {\underline{\boxed{\red{\sf{sin \theta\ =\ \dfrac{Opposite\ side}{Hypotenuse}}}}}}

Where,

  • Opposite side = 12
  • Hypotenuse = 13

Therefore,

\sf \rightarrow {sin \theta\ =\ \dfrac{12}{13}}

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

\rightarrow {\underline{\boxed{\red{\sf{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}}}}}}

  • By substituting the values, we get,

\rule{200}{3}

\sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\Big( \dfrac{12}{13}\ +\ \dfrac{5}{13} \Big)}{\Big( \dfrac{12}{13}\ -\ \dfrac{5}{13} \Big)}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{13} \times \dfrac{13}{7}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{\cancel{13}} \times \dfrac{\cancel{13}}{7}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{7}}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the required answer is 17/7.

6 0
2 years ago
Which operations will ALWAYS result in an irrational number?
kupik [55]

Answer: Math isnt my thing buttttt

Its R+R its right on ed

Step-by-step explanation:

8 0
3 years ago
Which statements<br> are true for the giving geometric sequence check all that apply
professor190 [17]
Where are the statements ???
6 0
3 years ago
What is the factored form of x2x-2?
Sergeeva-Olga [200]

Answer:

2(x-1)(x+1)

Step-by-step explanation:

x2x-2

=2(x^2-1)

=2(x-1)(x+1)

6 0
3 years ago
Other questions:
  • How do you show 40 fewer than a number t?
    11·1 answer
  • Can someone please please help me I don’t understand
    12·1 answer
  • Describe the transformation f(-x)
    15·1 answer
  • A grocer bought n eggs at $x each. He marked up the price of each egg by $y and sold all of them. Find the sales amount, express
    8·1 answer
  • If k is the midpoint of LM and k (-4,-6) and m(-7,-3). find l (endpoint)​
    8·1 answer
  • PLEASE ANSWER!!!!
    5·1 answer
  • WILL GIVE BRAINLIEST <br> PLEASE HELP!
    10·1 answer
  • Step by step explaination<br> 2x + 4 &lt; 8
    6·1 answer
  • Please help I will give brainless to right answer!
    6·1 answer
  • I need to figure out which ones are irrational. please help
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!