Answer:
Step-by-step explanation:
Statements Reasons
1). M is the midpoint of segment AB 1). Given
B is the midpoint of segment MD
2). AM = MB and MB = BD 2). Definition of midpoint
3). MD = MB + BD 3). Segment Addition Postulate
4). MD = MB + MB 4). Substitution property of of Equality
5). MD = 2MB 5). Simplify
Therefore, if M is the midpoint of segment AB, B is the midpoint of MD then MD = 2MB
Assume that the number of adult tickets is a and the number of child tickets is c.
We are given that the adult ticket is sold for 20$, the child ticket is sold for 10$ and that the total is $15,000. This means that:
20a + 10c = 15,000 ..........> equation I
We are also given that number of child tickets is 3 times that of adult's. This means that:
c = 3a .........> equation II
Substitute with equation II in equation I to get a as follows:
20a + 10c = 15,000
20a + 10(3a) = 15,000
20a + 30a = 15,000
50a = 15,000
a = 300 tickets
Substitute with the value of a in equation II to get c as follows:
c = 3a
c = 3(300)
c = 900 tickets
Based on the above calculations,
number of child tickets = 900 ticket
number of adult tickets = 300 ticket
Greater than (I'm like 80% sure of my answer)
Answer:
Container
will have less label area than container
by about
.
Step-by-step explanation:
A rectangular sheet of paper can be rolled into a cylinder. Conversely, the lateral surface of a cylinder can be unrolled into a rectangle- without changing the area of that surface.
Indeed, the width of that rectangle will be the same as the height of the cylinder. On the other hand, the length of that rectangle should be exactly equal to the circumference of the circles on the top and the bottom of the cylinder. In other words, if a cylinder has a height of
and a radius of
at the top and the bottom, then its lateral surface can be unrolled into a rectangle of width
and length
.
Apply this reasoning to both cylinder
and
:
For cylinder
,
while
. Therefore, when the lateral side of this cylinder is unrolled:
- The width of the rectangle will be
, while - The length of the rectangle will be
.
That corresponds to a lateral surface area of
.
For cylinder
,
while
. Similarly, when the lateral side of this cylinder is unrolled:
- The width of the rectangle will be
, while - The length of the rectangle will be
.
That corresponds to a lateral surface area of
.
Therefore, the lateral surface area of cylinder
is smaller than that of cylinder
by
.
The equation of circle is
