All living cells require chemical energy to directly drive cell processes.
Answer:
C
Explanation:
when the rain falls its slightly acidic and that will erode the rocks on the ocean floor causing the water to be salty
Answer:
The correct answers are: Synaptic Active Zones, Exocytosis.
Explanation:
- An impulse after travelling along the dendrites, cell body and axon of a neuron reaches the axon endings in the form of an action potential (signal transmitted by the activation of voltage gated sodium and potassium channels present on the plasma membrane of the neurons).
- At the axon ending or the pre-synaptic region, the action potential triggers the opening of the voltage dependent calcium channels, that promotes the influx of calcium ions into the pre-synaptic region of the neuron.
- This process triggers the fusion of the neuro-transmitter carrying vesicles with the plasma membrane in the pre-synaptic region of the neuron.
- As a result of fusion the neurotransmitter is released into the synaptic cleft.
- At the pre-synaptic region of the neuron, there is a huge concentration of neuro-transmitter carrying vesicles which remain adhered to proteins called CAZ (cytomatrix at the active zone) proteins. These proteins help the neurotransmitter carrying vesicles to remain tethered or docked to the pre-synaptic membrane in the axon terminal of the neuron. They together form the Synaptic Active Zone.
- In response to calcium ion influx these proteins help the neurotransmitter carrying vesicles to fuse with the plasma membrane in the pre-synaptic region of the neural axon and release the neurotransmitter into the synaptic cleft.
- The process of fusion of the neurotransmitter carrying vesicles with the plasma membrane in the pre-synaptic region of the neural axon followed by the release of the neurotransmitter into the synaptic cleft is known as Exocytosis.
Well there alot of challenges faced by biologist researchers during the research of infectious disease, however major of those include the followings:
1- Defining and measuring the fitness for pathogens across the scales
2- Developing models to capture the impact of co-infection on the evolutionary process
3- Modeling how pathogen characteristics shape the evolution of hose immune diversity
4- Understanding the maintenance of pathogen diversity
5- Developing the better models for the impact of genetic systems on pathogen evolution .
Answer:
Mitochondria- often called the powerhouses of the cell — enable eukaryotes to make more efficient use of food sources than their prokaryotic counterparts. That's because these organelles greatly expand the amount of membrane used for energy-generating electron transport chains.
Explanation: