Answer:
y = -1/10x^2 +2.5
Step-by-step explanation:
The distance from focus to directrix is twice the distance from focus to vertex. The focus-directrix distance is the difference in y-values:
-1 -4 = -5
So, the distance from focus to vertex is p = -5/2 = -2.5. This places the focus 2.5 units below the vertex. Then the vertex is at (h, k) = (0, -1) +(0, 2.5) = (0, 1.5).
The scale factor of the parabola is 1/(4p) = 1/(4(-2.5)) = -1/10. Then the equation of the parabola is ...
y = (1/(4p))(x -h) +k
y = -1/10x^2 +2.5
_____
You can check the graph by making sure the focus and directrix are the same distance from the parabola everywhere. Of course, if the vertex is halfway between focus and directrix, the distances are the same there. Another point that is usually easy to check is the point on the parabola that is even with the focus. It should be as far from the focus as it is from the directrix. In this parabola, the focus is 5 units from the directrix, and we see the points on the parabola at y=-1 are 5 units from the focus.
<span>64-24 = 40
</span><span>D) 40 gallons</span>
The present age of Jane is 45 years old and present age of her sister is 9 years old
<em><u>Solution:</u></em>
Let the present age of Jane be "x"
Let the present age of her sister be "y"
<em><u>Jane is 5 times older than her sister</u></em>
present age of Jane = 5(present age of her sister)
x = 5y ---------- eqn 1
<em><u>In 3 years, Jane’s sister will be 1/4 her age</u></em>
Age of sister after 3 years = 3 + y
Age of jane after 3 years = 3 + x
Age of sister after 3 years = 1/4(age of jane after 3 years)

Substitute eqn 1 in above equation

Substitute y = 9 in eqn 1
x = 5(9)
x = 45
Thus present age of Jane is 45 years old and present age of her sister is 9 years old
SohCahToa is an acronym for the basic trigonometric functions which are sine, cosine, and tangent. Sine's value comes from the quotient of the opposite side and the hypotenuse. Cosine's value comes from the quotient of the adjacent side and the hypotenuse. Lastly, Tangent is the quotient of the opposite side and the adjacent side.