Answer:
![Min =120, Max= 150](https://tex.z-dn.net/?f=%20Min%20%3D120%2C%20Max%3D%20150)
The first quartile can be calculated with this data:
130, 135, 140, 120, 130, 130
And the middle value is:
![Q_1 = \frac{140+120}{2}=130](https://tex.z-dn.net/?f=%20Q_1%20%3D%20%5Cfrac%7B140%2B120%7D%7B2%7D%3D130)
The median is the value in the 6th position from the dataset ordered and we got:
![Median= 135](https://tex.z-dn.net/?f=%20Median%3D%20135)
The third quartile can be calculated with this data:
135 140 140 143 144 150
And the middle value is:
![Q_3 = \frac{140+143}{2}=141.5](https://tex.z-dn.net/?f=%20Q_3%20%3D%20%5Cfrac%7B140%2B143%7D%7B2%7D%3D141.5)
The five number summary for this case:
Min. 1st Qu. Median Mean 3rd Qu. Max.
120.0 130.0 135.0 135.6 141.5 150.0
The boxplot is on the figure attached
Step-by-step explanation:
We have the following data given:
130, 135, 140, 120, 130, 130, 144, 143, 140, 130, 150
If we sort the values on increasing order we got:
120 130 130 130 130 135 140 140 143 144 150
The minimum and maximum are:
![Min =120, Max= 150](https://tex.z-dn.net/?f=%20Min%20%3D120%2C%20Max%3D%20150)
The first quartile can be calculated with this data:
130, 135, 140, 120, 130, 130
And the middle value is:
![Q_1 = \frac{140+120}{2}=130](https://tex.z-dn.net/?f=%20Q_1%20%3D%20%5Cfrac%7B140%2B120%7D%7B2%7D%3D130)
The median is the value in the 6th position from the dataset ordered and we got:
![Median= 135](https://tex.z-dn.net/?f=%20Median%3D%20135)
The third quartile can be calculated with this data:
135 140 140 143 144 150
And the middle value is:
![Q_3 = \frac{140+143}{2}=141.5](https://tex.z-dn.net/?f=%20Q_3%20%3D%20%5Cfrac%7B140%2B143%7D%7B2%7D%3D141.5)
The five number summary for this case:
Min. 1st Qu. Median Mean 3rd Qu. Max.
120.0 130.0 135.0 135.6 141.5 150.0
The boxplot is on the figure attached