To find the zeros of a quadratic fiunction given the equation you can use the next quadratic formula after equal the function to 0:
![\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ax%5E2%2Bbx%2Bc%3D0%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5Cend%7Bgathered%7D)
For the given function:

![x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(2)(-3)}}{2(2)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%28-10%29%5Cpm%5Csqrt%5B%5D%7B%28-10%29%5E2-4%282%29%28-3%29%7D%7D%7B2%282%29%7D)
![x=\frac{10\pm\sqrt[]{100+24}}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B100%2B24%7D%7D%7B4%7D)
![\begin{gathered} x=\frac{10\pm\sqrt[]{124}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2\cdot2\cdot31}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2^2\cdot31}}{4} \\ \\ x=\frac{10\pm2\sqrt[]{31}}{4} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B124%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5Ccdot2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5E2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_1=\frac{10}{4}+\frac{2\sqrt[]{31}}{4} \\ \\ x_1=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_1%3D%5Cfrac%7B10%7D%7B4%7D%2B%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_1%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_2=\frac{10}{4}-\frac{2\sqrt[]{31}}{4} \\ \\ x_2=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_2%3D%5Cfrac%7B10%7D%7B4%7D-%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_2%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Then, the zeros of the given quadratic function are:
![\begin{gathered} x=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \\ \\ x_{}=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5C%5C%20%20%5C%5C%20x_%7B%7D%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Answer: Third option
Answer:
undefined
Step-by-step explanation:
So what they are telling you is that 5 is three higher than the variable n.
So n = 5-3
so n is 2.
Answer:
-1
Step-by-step explanation:
Given: Mean= 25 minutes.
Standard deviation= 2 minutes
x= 23 minutes.
Lets find the z-score for the number of sandwiches delivered in less than 23 mins.
Formula: Z-score= 
Z-score= 
⇒ Z-score= 
∴ Z-score will be -1
Hence, -1 is the z-score for the number of sandwiches delivered in less than 23 minutes.
Given:
Length of rectangle = (x+10) cm
Width of the rectangle = x cm
Perimeter = 32 cm
To find:
The length of the rectangle.
Solution:
We know that,

Where, l is length and w is width.
Substituting the values, we get



Subtract 20 from both sides.


Divide both sides by

So, the length is

Therefore, the length of the rectangle is 13 cm.