Answer:
A. kinetic energy
B. angular velocity
E. angular position
Explanation:
The quantities that cannot be constant if a constant net torque is exerted on an objecta are:
A. Kinetic energy. If a torque is applied, the linear or angular speed will be changing at a rate proportional to the torque, so the kinetic energy will change too.
B. Angular velocity. It will change at a rate equal to the torque.
C. Angular position. If the angular velocity changes, the angular position will change.
The formula for the density of a substance expressed in mass and volume is rho = mass/volume or p = m/v. Rearranging the formula to isolate volume gives the formula v = m/p. To solve for the problem given, this formula must be used. This gives a solution of:
v = m/p = 250 g/ 968 g/cm^3 = 0.258 cm^3 of sodium
Use the formula M=D×V:
M=10 g/cm³ * 5 cm³ = 50 g
which is more than 40 grams, so the container cannot hold the chain.
Answer:
A) True, B) False, C) False and D) false
Explanation:
Let's solve the problem using the law of conservation of energy to know if the statements are true or false
Let's look for mechanical energy
Initial
Emo = Ke = ½ k Dx2
Final
Em1= ½ m v12
Emo = Em1
½ k Δx2 = ½ m v₁²
v₁² = k / m Δx²
v₁ = √ k/m Δx
Now let's calculate the speed when it falls
Vfy² = Voy² - 2gy
Vfy² = - 2gy
Vf² = v₁² + vfy²
A) True v₁ = A Δx
.B) False. As there is no rubbing the mechanical energy conserves
.C) False the velocity is proportional to the square root of the height
v2y = v2 √2
. D) false promotional compression speed