6.083 would be the answer
f(3) is equal to -101.
<u>Step-by-step explanation</u>:
- The sequence is followed by f(0)=4
- The given expression is f(n+1)= -3f(n)+1
Put n=0,
f(0+1)= -3f(0)+1
f(1)= -3(4)+1
f(1)= -12+1 = -11
Put n=1,
f(1+1)= -3f(1)+1
f(2)= -3(-11)+1
f(2)= 33+1 = 34
Put n=2,
f(2+1)= -3f(2)+1
f(3)= -3(34)+1
f(3)= -102+1
f(3)= -101
If the inscribed square has sides of 8in, the diameter of the circle is equal to the diagonal of the square.
d^2=x^2+x^2
d^2=2x^2
d=√(2x^2)
Since d=2r, r=d/2 so
r=(1/2)√(2x^2)
r=√((2x^2)/4)
r=√(x^2/2), since x=8
r=√(64/2)
r=√32
r=√(16*2)
r=4√2 in (exact)
r≈5.66 in (to nearest hundredth of an inch)
Answer:
Yes
Step-by-step explanation:
In order to determine if a triple of values will form a triangle, we must apply the Triangle Inequality Theorem, which states that for a triangle with lengths a, b, and c:
a + b > c
a + c > b
b + c > a
Here, let's suppose that since the ratio of the sides is 3 : 4 : 5, then let the actual side lengths be 3x, 4x, and 5x, where x is simply a real value.
With loss of generality, set a = 3x, b = 4x, and c = 5x. Plug these into the Triangle Inequality to check:
a + b > c ⇒ 3x + 4x >? 5x ⇒ 7x > 5x ⇒ This is true
a + c > b ⇒ 3x + 5x >? 4x ⇒ 8x > 4x ⇒ This is also true
b + c > a ⇒ 4x + 5x >? 3x ⇒ 9x > 3x ⇒ This is true
Since all three conditions are satisfied, we know that a true triangle can be formed given that the ratio of their sides is 3 : 4 : 5.
<em>~ an aesthetics lover</em>