<span>1. Find the magnitude and direction angle of the vector.
2. Find the component form of the vector given its magnitude and the angle it makes with the positive x-axis.
<span>3. Find the component form of the sum of two vectors with the given direction angles.</span></span>
Ok so this is conic sectuion
first group x's with x's and y's with y's
then complete the squra with x's and y's
2x^2-8x+2y^2+10y+2=0
2(x^2-4x)+2(y^2+5y)+2=0
take 1/2 of linear coeficient and square
-4/2=-2, (-2)^2=4
5/2=2.5, 2.5^2=6.25
add that and negative inside
2(x^2-4x+4-4)+2(y^2+5y+6.25-6.25)+2=0
factor perfect squares
2((x-2)^2-4)+2((y+2.5)^2-6.25)+2=0
distribute
2(x-2)^2-8+2(y+2.5)^2-12.5+2=0
2(x-2)^2+2(y+2.5)^2-18.5=0
add 18.5 both sides
2(x-2)^2+2(y+2.5)^2=18.5
divide both sides by 2
(x-2)^2+(y+2.5)^2=9.25
that is a circle center (2,-2.5) with radius √9.25
Answer:
51
Step-by-step explanation:
90-39 = 51
Answer:
Step-by-step explanation:
(A) The difference between an ordinary differential equation and an initial value problem is that an initial value problem is a differential equation which has condition(s) for optimization, such as a given value of the function at some point in the domain.
(B) The difference between a particular solution and a general solution to an equation is that a particular solution is any specific figure that can satisfy the equation while a general solution is a statement that comprises all particular solutions of the equation.
(C) Example of a second order linear ODE:
M(t)Y"(t) + N(t)Y'(t) + O(t)Y(t) = K(t)
The equation will be homogeneous if K(t)=0 and heterogeneous if 
Example of a second order nonlinear ODE:

(D) Example of a nonlinear fourth order ODE:
![K^4(x) - \beta f [x, k(x)] = 0](https://tex.z-dn.net/?f=K%5E4%28x%29%20-%20%5Cbeta%20f%20%5Bx%2C%20k%28x%29%5D%20%3D%200)
Answer:
Option D is correct.
Step-by-step explanation:
Have a nice day. ;-)