Answer:
probability that the other side is colored black if the upper side of the chosen card is colored red = 1/3
Step-by-step explanation:
First of all;
Let B1 be the event that the card with two red sides is selected
Let B2 be the event that the
card with two black sides is selected
Let B3 be the event that the card with one red side and one black side is
selected
Let A be the event that the upper side of the selected card (when put down on the ground)
is red.
Now, from the question;
P(B3) = ⅓
P(A|B3) = ½
P(B1) = ⅓
P(A|B1) = 1
P(B2) = ⅓
P(A|B2)) = 0
(P(B3) = ⅓
P(A|B3) = ½
Now, we want to find the probability that the other side is colored black if the upper side of the chosen card is colored red. This probability is; P(B3|A). Thus, from the Bayes’ formula, it follows that;
P(B3|A) = [P(B3)•P(A|B3)]/[(P(B1)•P(A|B1)) + (P(B2)•P(A|B2)) + (P(B3)•P(A|B3))]
Thus;
P(B3|A) = [⅓×½]/[(⅓×1) + (⅓•0) + (⅓×½)]
P(B3|A) = (1/6)/(⅓ + 0 + 1/6)
P(B3|A) = (1/6)/(1/2)
P(B3|A) = 1/3
Answer:
Step-by-step explanation:
The diameter of a tire is the distance across the tire through the center. Since tires are circular, you can find the circumference of the tire from the diameter. The circumference represents the distance the tire travels when it makes one revolution. If you know the number of inches in a mile and the circumference, you can find the number of times the wheel turns per mile.
First, measure the diameter of the tire in inches.
Secondly, multiply the diameter by pi, which is approximately 3.1416, to find the tire circumference. For example, if the tire has a 20 inch diameter, multiply 20 by 3.1416 to get 62.83 inches.
Answer:
3
Step-by-step explanation:
g(-1) means what is g(x) when x=-1.
So find -1 under the column labeled x and then scroll directly to the right of that and you should see what g(-1). It is 3
Here are my examples:
g(-8)=6
g(-5)=-2
g(-1)=3
g(0)=-5
You can take pi as 22/7 or 3.14
CSA of cylinder = 2*pi*r*h
TSA of cylinder = 2*pi*r^2 + 2*pi*r*h
= 2*pi* ( h+r)