Answer:
Taking into account photosynthesis, the evidence that best supports the law of energy conservation is energy is absorbed by chlorophyll and becomes chemical energy during photosynthesis (option 2).
Explanation:
Plants are autotrophic organisms, characterized by synthesizing their own nutrients by converting solar energy into chemical energy through photosynthesis.
During the process of photosynthesis, chloroplasts are capable of absorbing solar energy and converting it into glucose. This process involves the conversion of one type of energy into another.
With respect to the law of conservation of energy, it is necessary to consider:
- In the universe there is a constant amount of matter and energy, which is neither created nor destroyed, but transformed.
- Energy in an isolated system does not vary, unless it comes into contact with another system.
- The amount of energy that is absorbed and obtained is equivalent.
In photosynthesis, the chloroplast is not an isolated system, but has contact with the outside and is capable of absorbing the energy of the sun. This energy will be used to obtain a product, glucose, in an amount proportional to the amount of energy absorbed.
Regarding other options:
<em> 1. In photosynthesis, it is not </em><u><em>mechanical energy</em></u><em> that is transformed into chemical energy.</em>
<em> 3. </em><u><em>Oxygen is a product of photosynthesis</em></u><em>, during the process of chemical energy synthesis, from the combination of carbon dioxide, water and solar energy.</em>
<em> 4. It is true that the </em><u><em>sun gives off light energy that is absorbed by plants</em></u><em>, but it does not explain how this energy is transformed into chemical energy.</em>
Surface tension in water owes to the fact that water molecules attract one another, as each molecule forms a bond with the ones in its vicinity. ... This inward net force causes the molecules on the surface to contract and to resist being stretched or broken.
B. Ocetoclast is the answer.
I believe the term for an observable trait of an organism would be called or noted as the organism's phenotype.