We have been given a system of equations and we are asked to write correct coefficient matrix for this system.
Since we know that a matrix for a system of equations is in the form:
, where A represents the coefficient matrix, X is variables''s matrix and B is the constant matrix.
We are given two equation and two unknown variables, so our coefficient matrix will be a
matrix. Our matrices for variable and constant will be of dimensions
(column matrix).
We can represent our given system of equations in matrix form as:
![\left[\begin{array}{ccc}3&4\\-1&-6\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right]= \left[\begin{array}{ccc}12\\10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%264%5C%5C-1%26-6%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D12%5C%5C10%5Cend%7Barray%7D%5Cright%5D)
Now let us find our A, X and B parts from above matrices.
![A=\left[\begin{array}{ccc}3&4\\-1&-6\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%264%5C%5C-1%26-6%5Cend%7Barray%7D%5Cright%5D)
![X=\left[\begin{array}{ccc}x\\y\end{array}\right]](https://tex.z-dn.net/?f=X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
![B=\left[\begin{array}{ccc}12\\10\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D12%5C%5C10%5Cend%7Barray%7D%5Cright%5D)
Since we know that A represents coefficient matrix, therefore, correct coefficient matrix for our system of equations will be,
![\left[\begin{array}{ccc}3&4\\-1&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%264%5C%5C-1%26-6%5Cend%7Barray%7D%5Cright%5D)