Molarity is a measure of a solution's concentration calculation by getting the ratio of the number of moles of solute to the total volume of solution. This has a unit of M or molar, equivalent to mole/L.
It is more important and meaningful to know the molarity rather than if the solution is dilute or concentrated because molarity gives the QUANTITATIVE approach of knowing the concentration while the second one only gives us the QUALITATIVE description of the solution. Hence, we are able to calculate for other unknown parameters if we have the molarity known.
pH decreases as the hydrogen ion concentration increases.
<u>Explanation:</u>
When there is a decrease in pH, that is pH decreases from 6 to 3 then the acidity increases.
That is the pH is between 1 to 7 then it is acidic
When the pH is 7 then it is neutral
When the pH is between 7 to 14 then it is basic
As the H⁺ ion concentration increases, then the pH value decreases, here pH decreases from 6 to 3.
So the concentration of Hydrogen ion increases, pH decreases.
O is what should go in the blank. O stands for Oxygen.
C is the correct answer (CaF2) (sorry dont have subscript)
Explanation: synthesis reaction forms a compound and calcium reacting with fluorine produces Calcium Fluoride (CaF2) chemical name
Answer:

Explanation:
For a first order reaction the rate law is:
![v=\frac{-d[A]}{[A]}=k[A]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B-d%5BA%5D%7D%7B%5BA%5D%7D%3Dk%5BA%5D)
Integranting both sides of the equation we get:
![\int\limits^a_b {\frac{d[A]}{[A]}} \, dx =-k\int\limits^t_0 {} \, dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%7D%20%5C%2C%20dx%20%3D-k%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt)
where "a" stands for [A] (molar concentration of a given reagent) and "b" is {A]0 (initial molar concentration of a given reagent), "t" is the time in seconds.
From that integral we get the integrated rate law:
![ln\frac{[A]}{[A]_{0} } =-kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_%7B0%7D%20%7D%20%3D-kt)
![[A]=[A]_{0}e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_%7B0%7De%5E%7B-kt%7D)
![ln[A]=ln[A]_{0} -kt](https://tex.z-dn.net/?f=ln%5BA%5D%3Dln%5BA%5D_%7B0%7D%20-kt)
![k=\frac{ln[A]_{0}-ln[A]}{t}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bln%5BA%5D_%7B0%7D-ln%5BA%5D%7D%7Bt%7D)
therefore k is
