Answer:
(a) Hypoeutectic
(b) Alpha solid, aluminium
(c) 70% α
, 30% β
(d) 97.6% α, 2.4% β
(e) 97.6% α, 2.4% β
(f) 97% α, 3% β
Explanation:
(a) The eutectic composition for Al Si alloy is 11.7 wt% silicon, therefore, an Al-4% Si alloy is hypoeutectic
(b) For the hypoeutectic alloy, aluminium, Al, is expected to form first, such that the aluminium content is reduced till the point it gets to the eutectic proportion of 11.7 wt% silicon
(c) At 578°C we have
% α: Al (11 - 4)/(11 - 1) = 70% α
% L: Si 100 - 70 = 30% β
(d) At 576°C we have
α: 99.83% Si (99.83 - 4)/(99.83- 1.65) = 97.6% α
β: 1.65% Si (4 - 1.65)/(99.83- 1.65) = 2.4% β
(e) Primary α: 1.65% α (99.83 - 4)/(99.83 - 1.65) = 97.6% α
Eutectic 4% Si = 100 - 97.6 = 2.4% β
(f) At 25°C we have;
α%: (99.83 - 4)/(99.83 - 1) = 97% α
β%: 100 - 97 = 3% β.
Answer:
This process is called Photochemical smog
Explanation:
The question is incomplete, the complete question is:
Write the net ionic equation for the below chemical reaction:
(c): 
<u>Answer:</u> The net ionic equation is 
<u>Explanation:</u>
Net ionic equation is defined as the equations in which spectator ions are not included.
Spectator ions are the ones that are present equally on the reactant and product sides. They do not participate in the reaction.
(c):
The balanced molecular equation is:

The complete ionic equation follows:

As ammonium and chloride ions are present on both sides of the reaction. Thus, they are considered spectator ions.
The net ionic equation follows:

The reaction between C2H2 and O2 is as follows:
2C2H2 + 5O2 = 4CO2 + 2H2O
After balancing the equation, the reaction ratio between C2H2 and O2 is 2:5.
The moles of O2 in this reaction is 84.0 mol. According to the above ratio, the moles of C2H2 needed to react completely with the O2 is 84.0mole *2/5 = 33.6 mole.