Answer:
in 90 days
Step-by-step explanation:
you find the lcm of 9 and 15
What’s the question you only gave me the answers?
The probability that an adult likes soccer is aged between 18–30 will be 44.4%.
We have an adult who likes soccer.
We have to determine the probability the adult is aged 18–30.
<h3>What is Probability?</h3>
The formula to calculate the probability of occurrence of an event 'A' can be written as -
P(A) =
where -
n(A) = Number of outcomes favorable to event A.
n(S) = Total number of outcomes.
According to question, we have an adult likes soccer.
The answer to this question is based on the hypothesis that the adults between 18 - 30 are highly energetic. To be more precisely - the adults in the range 18 - 24 and 24 - 30 are highly energetic and full of stamina. Above the age 30, the number of adults who like soccer will start to decrease and will hit nearly zero between the age range of 55 - 65 as the adults in this age group found it very difficult to even walk.
Mathematically -
The probability of an event A = an adult likes soccer is aged between 18–30 will be the highest value among the ones mentioned in options.
Hence, the probability that an adult likes soccer is aged between 18–30 will be 44.4%.
To solve more questions on Probability, visit the link below -
brainly.com/question/24028840
#SPJ1
Answer:
(final - initial/initial ) * 100
66 - 55/55 * 100
11/55 * 100
100/5
= 20 percent
You can use systems of equations for this one.
We are going to use 'q' as the number of quarters Rafael had,
and 'n' as the number of nickels Rafael had.
You can write the first equation like this:
3.50=0.05n+0.25q
This says that however many 5 cent nickels he had, and however many
25 cent quarters he had, all added up to value $3.50.
Our second equation is this:
q=n+8
This says that Rafael had 8 more nickels that he had quarters.
We can now use substitution to solve our system.
We can rewrite our first equation from:
3.50=0.05n+0.25q
to:
3.50=0.05n+0.25(n+8)
From here, simply solve using PEMDAS.
3.50=0.05n+0.25(n+8) --Distribute 0.25 to the n and the 8
3.50=0.05n+0.25n+2 --Subtract 2 from both sides
1.50=0.05n+0.25n --Combine like terms
1.50=0.30n --Divide both sides by 0.30
5=n --This is how many NICKELS Rafael has.
We now know how many nickels he has, but the question is asking us
how many quarters he has.
Simply substitute our now-known value of n into either of our previous
equations (3.50=0.05n+0.25q or q=n+8) and solve.
We now know that Rafael had 13 quarters.
To check, just substitute our known values for our variables and solve.
If both sides of our equations are equal, then you know that you have
yourself a correct answer.
Happy math-ing :)