Answer:
1) Fe = 69.9%
O = 31.1%
2) H = 5.19%
O = 16.5%
N = 28.9%
C = 49.5%
Explanation:
One easy way to do percent compositions is to assume you have 100g of a substance.
1) Lets say we have 100g of Fe2O3.
The total molar mass would be:

The molar mass of the Fe2 alone is:

Thus, the grams of Fe2(out of a 100) could be calculated by multiplying 100g * the molar mass ratio of Fe2 to the whole:

Which is approximately 69.9%.
We can find the amount of O3 by simply subtracting, as the rest of the compound is made of O3. Thus, the % composition of O3 is 31.1%
You can then do this same process to the next question, getting us the following:
H = 5.19%
O = 16.5%
N = 28.9%
C = 49.5%
When a water vapor condenses, heat is being released from the process. This heat is called latent heat of vaporization since the phase change happens without any change in the temperature. This value is constant per mole of a substance as a function of pressure and temperature. For this problem, we are given the heat of vaporization at a certain T and P. We use this value to calculate the total heat released from the process. We calculate as follows:
Total heat released: 32.4 g ( 1 mol / 18.02 g ) (40.67 kJ / mol) = 73.12 kJ
Therefore, 73.12 kJ of heat is released from the condensation of 32.4 g of water vapor.
Given the speed, you will travel 195km in 3 hours.
65 x 3 = 195
B. both high energy and low energy waves
A chemical property is a characteristic of a substance that may be observed when it participates in a chemical reaction. Examples of chemical properties include flammability, toxicity, chemical stability, and heat of combustion