If you are given the
standard potential for the reduction of X^2+ is +0.51 V, and the standard
potential for the reduction of A^2+ is -0.33, just add the two. The standard
potential for an electrochemical cell with the cell is 0.18V
Seems right, but if it’s just asking for one i would pick B
Answer:
2.00 moles of Ni has 1.2 *10^24 atoms
Explanation:
Step 1: Data given
Number of moles Ni = 2.00 moles
Number of Avogadro = 6.022*10^23 /mol
Step 2: Calculate number of atoms
Number of particles (=atoms) = Number of Avogadro * number of moles
Number of atoms = 6.022 * 10^23 /mol * 2.00 moles
Number of atoms = 1.2*10^24 atoms
2.00 moles of Ni has 1.2 *10^24 atoms
P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
Answer; If a chemical has a pH of 3, how could you change its pH value to be more basic? Adding water to a chemical will dilute the acid, thus lowering the pH value to more basic.