<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>
Answer:
2(w+6)
Step-by-step explanation:
Answer and Step-by-step explanation:
Given that if a polygon is a square, then a polygon is a quadrilateral, we find the converse, inverse and contrapositive of this implicational statement. The hypothesis is the causative statement and the conclusion is the resultant effect
The converse of this statement is the reverse of its statements hence:
If a polygon is a quadrilateral then a polygon is a square
The inverse of this statement is the negation of the statements hence :
If a polygon is not a square then a polygon is not a quadrilateral
The contrapositive of the statement is the interchange of the hypothesis and conclusion of the inverse statement hence:
If a polygon is not a quadrilateral then a polygon is not a square