1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
10

This question please.

Mathematics
1 answer:
Setler79 [48]3 years ago
7 0

Answer: y= x/5 -6

Step-by-step explanation: gradient= 1/5...(m1m2=-1)

y-y1=M(x-x1)

y-8=1/5(x-10)

5y-40=x-10

y=x/5-6

You might be interested in
How to solve this? ​
nevsk [136]

Answer:

Answer of 17 is ㏒(x^{2}+15x), Answer of 33 is x = 8 , Answer of 35 is x = ㏒10/㏒2 , Answer of 37 is  x = -㏒12/㏒8 and Answer of 39 is x = 5

Step-by-step explanation:

17. ㏒x + ㏒(x+15)

     Using property ㏒a + ㏒b = ㏒a×b

     ∴ ㏒x + ㏒(x+15)

        ㏒x×(x+15)

        ㏒(x^{2}+15x)

        The answer is ㏒(x^{2}+15x)

33. 2^(x-5) = 8

     2^(x-5) = 2^3

      Using property 2^a = 2^b

      Then a = b

     ∴x-5 = 3

       x = 8

      The answer is x = 8

35. 2^x = 10

    Taking log on both sides gives

     ㏒2^x = ㏒10

     x×㏒2 = ㏒10

     x = ㏒10/㏒2

    The answer is x = ㏒10/㏒2

37. 8^-x = 12

    Taking log on both sides gives

     ㏒8^-x = ㏒12

     -x×㏒8 = ㏒12

      x = -㏒12/㏒8

    The answer is  x = -㏒12/㏒8

39. 5(2^3 × x) = 8

      5(8×x) = 8

      x = 5

    The answer is x=5

 

5 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
The function h defined by h(t)=(49 + 4.9t)(10 - t) models the height, in meters, of an object t seconds after it is dropped from
kipiarov [429]

Answer:

Step-by-step explanation:

Let's FOIL this out and get it into standard quadratic format:

h(t)=-4.9t^2+490. The lack of a linear term in the middle means therewas no upwards velocity, consistent with the object being dropped straight down as opposed to thrown up in the air tand then falling in a parabolic path. The -4.9t² represents the acceleration due to gravity, and the 490 represents the height from which the object was dropped. The constant in a quadratic that is modeling parabolic motion always represents the height from which the object was dropped (or launched). That's how you know.

5 0
3 years ago
How to simplify the complex number (9 - 2i) - (-2 + 6i) ?
matrenka [14]
(9 - 2i) - (-2 + 6i) \\ \\ 9 - 2i + 2 - 6i \\ \\ (9+2) + (-2i - 6i) \\ \\ 11 - 8i \\ \\ Answer: \fbox {11 - 8i}
3 0
3 years ago
A tree dimensional figure has _______, ___________, __________, ​
Anton [14]

Answer: faces, edges, and vertices.

Also height, width and depth.

5 0
3 years ago
Other questions:
  • Is 10 times as much as 0.24?
    13·1 answer
  • How to divide 0.13 by 0.25
    5·1 answer
  • Verify the identity. Help please!!!
    8·1 answer
  • Points A(-l, y) and B(5,7) lie on a circle with centre 0(2, -3y). Find the values of y. Hence, find the radius of the circle
    7·1 answer
  • Evaluate each expression.
    14·1 answer
  • plant a is 4.7 centimeters tall and growing at the rate of 3.5 centimeters a month. plant b is 5.2 centimeters tall and growing
    10·1 answer
  • PLEASE HELP thank you!!
    8·1 answer
  • I put an imagine there please help me
    7·1 answer
  • 8 Opposite sides are congruent. Parallelogram Rhombus Rectangle Square​
    15·1 answer
  • What is the range for the possible sizes of x?<br> (Fill in the boxes)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!