Answer:
4,524,660 N
Explanation:
Assuming the submarine's density is uniform, 1/9th of the submarine's mass is equal to the mass of the displaced water.
m/9 = (1026 kg/m³) (50 m³)
m = 461,700 kg
mg = 4,524,660 N
Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr
Answer:
Answer: The Sun, the Moon, the planets, and the stars all rise in the east and set in the west. And that's because Earth spins -- toward the east. ... Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.
Answer:
66.4 N
Explanation:
From Newton's second law, <em>F </em>=<em> ma</em>
where <em>F</em> is the force, <em>m</em> is the mass and <em>a</em> is the acceleration.
Because the object has acceleration in two directions and the mass is constant, the force will be in two directions. The component of the forces are:


The magnitude of the resultant force is given by

