To solve this problem we will apply the linear motion kinematic equations, which describe the change in velocity, depending on the acceleration and the distance traveled, that is,

Where,
= Final Velocity
= Initial Velocity
a = Acceleration
h = height
Our values are given as,

Replacing we have,



Therefore the height of the cliff is 121ft
Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!
Answer:
Answers A and D are the correct solution.
Explanation:
Both pots have the same mass and the same velocity vector.
the only difference between A and D is the selection of the reference frame positive direction.
It's a combination of all those things. probably because we are taught from an early age to write in an academic fashion, giving balanced arguments and a conclusion. When speaking from the heart, there is no opposing argument nor is there a conclusion, just emotion.