1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
3 years ago
8

How do this problem 18

Mathematics
1 answer:
eimsori [14]3 years ago
6 0
I am not really sure what you mean by this question
You might be interested in
Find an equation for the line below
tia_tia [17]
Y=0.5x-0.5
( u find the slope using rise/run then after finding the slope u use the equation and a point on the graph to find the y-intercept
5 0
2 years ago
What are the angle measures of triangle ABC?
Schach [20]

The angle measures of triangle ABC is ∠A=90°, ∠B= 60°, ∠C = 30°. Thus, the correct option is B.

<h3>What is a triangle?</h3>

A triangle is a three-edged polygon with three vertices. It is a fundamental form in geometry. The sum of all the angles of a triangle is always equal to 180°.

As it is known that the angles of the triangle are 30°, 60°, and 90°. Therefore, the largest angle is 90° which will be the opposite of the largest side of the triangle, therefore, the measure of ∠A=90°.

Also, the shortest angle of the triangle is 30°, which will lie at the opposite of the smallest side of the triangle, therefore, the measurement of the ∠C=30°.

Now, the angle left is ∠B therefore, the measure of ∠B=60°.

Hence, the angle measures of triangle ABC is ∠A=90°, ∠B= 60°, ∠C = 30°. Thus, the correct option is B.

Learn more about Triangle:

brainly.com/question/2773823

#SPJ1

4 0
2 years ago
Suppose a computer manufacturer has the total cost function
S_A_V [24]

Answer:

(a)  P(x) = 300 x - 3600

(b)  P(340) = $ 98400

(c)  At least 12 items must be sold to avoid losing money.

Step-by-step explanation:

Part (a):

The Profit function is the difference between the revenue function (R(x)) and the Cost (C(x)) function:

P(x) = R(x) - C(x)

P(x) = 384 x - [84 x + 3600]

P(x) = 384 x - 84 x - 3600

P(x) = 300 x - 3600

Part (b):

The profit on 340 items is:

P(340) = 300 (340) - 3600

P(340) = 102000 - 3600

P(340) = $ 98400

Part (c):

To avoid losing money, the profit P(x) has to be larger or equal than zero. That is:

P(x) \geq 0

300 x -3600  \geq 0

300 x  \geq 3600

x  \geq 3600/300

x  \geq 12

So at least 12 items must be sold to avoid losing money.

7 0
3 years ago
Ryan invested $5,900 in an account paying an interest rate of 5% compounded
vladimir1956 [14]

Answer:

10214.51

Step-by-step explanation:

5900 * (1+ (0.05/12))^(12*11)

please give brainliest

4 0
2 years ago
Read 2 more answers
A statistician is testing the null hypothesis that exactly half of all engineers will still be in the profession 10 years after
lana [24]

Answer:

95% confidence interval estimate for the proportion of engineers remaining in the profession is [0.486 , 0.624].

(a) Lower Limit = 0.486

(b) Upper Limit = 0.624

Step-by-step explanation:

We are given that a statistician is testing the null hypothesis that exactly half of all engineers will still be in the profession 10 years after receiving their bachelor's.

She took a random sample of 200 graduates from the class of 1979 and determined their occupations in 1989. She found that 111 persons were still employed primarily as engineers.

Firstly, the pivotal quantity for 95% confidence interval for the population proportion is given by;

                         P.Q. = \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }  ~ N(0,1)

where, \hat p = sample proportion of persons who were still employed primarily as engineers  = \frac{111}{200} = 0.555

           n = sample of graduates = 200

           p = population proportion of engineers

<em>Here for constructing 95% confidence interval we have used One-sample z proportion test statistics.</em>

So, 95% confidence interval for the population proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level of

                                                 significance are -1.96 & 1.96}  

P(-1.96 < \frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } } < 1.96) = 0.95

P( -1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } < {\hat p-p} < 1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ) = 0.95

P( \hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } < p < \hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ) = 0.95

<u>95% confidence interval for p</u> = [ \hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } , \hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } } ]

 = [ 0.555-1.96 \times {\sqrt{\frac{0.555(1-0.555)}{200} } } , 0.555+1.96 \times {\sqrt{\frac{0.555(1-0.555)}{200} } } ]

 = [0.486 , 0.624]

Therefore, 95% confidence interval for the estimate for the proportion of engineers remaining in the profession is [0.486 , 0.624].

7 0
3 years ago
Other questions:
  • What is happening to the graph when the x-values are between 4 and 8
    11·2 answers
  • A swimming pool is open for 7 1/2 hours during the day the pool keeps one lifeguard shift is 1 1/16 hours long how many shifts a
    6·1 answer
  • Please Solve this 10+2y
    6·1 answer
  • Solve the equation. 4k2= 5k
    6·2 answers
  • Guysss help mee i dont get it !!
    9·1 answer
  • Please + brainliesting.
    11·1 answer
  • Factorise first then solve these equations
    11·1 answer
  • How many teaspoons are in 15 milliliters? 1 tsp = 5 mL
    13·2 answers
  • What’s the area of the sector=
    8·1 answer
  • If 5/6 is 180, what is 1/6?<br>(please explain as well)
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!