The uncertainty principle is one of the most famous (and probably misunderstood) ideas in physics. It tells us that there is a fuzziness in nature, a fundamental limit to what we can know about the behaviour of quantum particles and, therefore, the smallest scales of nature. Of these scales, the most we can hope for is to calculate probabilities for where things are and how they will behave. Unlike Isaac Newton's clockwork universe, where everything follows clear-cut laws on how to move and prediction is easy if you know the starting conditions, the uncertainty principle enshrines a level of fuzziness into quantum theory.
This Should help you
Answer: I don't know if this helps you or not, but this is from study.com:
I'm so sorry if it doesn't:
Explanation: Iron(III) oxide reacts with carbon monoxide according to the balanced equation:
Fe₂O₃ + 3CO ➡️ 2Fe + 3CO₂
A reaction mixture initially contains 23.00g Fe₂O₃ and 15.40g CO.
Answer:
N2+ 3H2-> 2NH3
2Fe + 6HCl -> 3H2 + 2FeCl3
I think the best example of rotational motion is :
The wheel spins as long as the hamster keeps running
Rotational motion refer to a rotation movement in which the main axis point stays the same
hope this helps