Answer:
The final volume will be 5.80 L
Explanation:
Step 1: Data given
Number of moles gas = 0.140 moles
Volume of gas = 2.78 L
Number of moles added = 0.152 moles
Step 2: Calculate the final volume
V1/n1 = V2/n2
⇒ with V1 = the initial volume = 2.78 L
⇒ with n1 = the initial number of moles = 0.140 moles
⇒ with V2 = The new volume = TO BE DETERMINED
⇒ with n2 = the new number of moles = 0.140 + 0.152 = 0.292 moles
2.78/0.140 = V2 /0.292
V2 = 5.80 L
The final volume will be 5.80 L
Ribosomes hope this helps if not oh well
Answer: True the bicarbonate mixture can help save time and few routine.
Explanation:
For the purpose of making dialysate for hemodialysis patient therapies a bicarbonate mixing and delivering systems designed to prepare a liquid sodium bicarbonate formulation comes in handy.
Certain systems like the SDS unit also allow for the transfer and distribution of acid concentrate solutions. We also provide stand-alone acid concentrate delivery systems using a variety of holding tanks and delivery methods.
A challenge for hemodialysis providers is to properly provide bicarbonate solution in a cost effective manner. Preparation and disinfection can be time-consuming and labor intensive.
Bicarbonate however can corrode certain metals and painted surfaces leaving your preparation area encrusted and grimy.
Furthermore, if not mixed properly, bicarbonate can negatively affect the dialysate solution.
The answer to the above is true the bicarbonate mixture can help save time and few routine.
Answer:
Rate = k [OCl] [I]
Explanation:
OCI+r → or +CI
Experiment [OCI] M I(-M) Rate (M/s)2
1 3.48 x 10-3 5.05 x 10-3 1.34 x 10-3
2 3.48 x 10-3 1.01 x 10-2 2.68 x 10-3
3 6.97 x 10-3 5.05 x 10-3 2.68 x 10-3
4 6.97 x 10-3 1.01 x 10-2 5.36 x 10-3
The table above able shows how the rate of the reaction is affected by changes in concentrations of the reactants.
In experiments 1 and 3, the conc of iodine is constant, however the rate is doubled and so is the conc of OCl. This means that the reaction is in first order with OCl.
In experiments 3 and 4, the conc of OCl is constant, however the rate is doubled and so is the conc of lodine. This means that the reaction is in first order with I.
The rate law is given as;
Rate = k [OCl] [I]
6 Oxygen atoms
Explanation:
In the molecule 2(NO₃):
An atom is the smallest indivisible particle of any substance. They chemically combine to give compounds and molecules. Some of them are able to exist on their own.
An element is a substance that has a unique atom.
NO₃ has two elements: N and O
Number of atoms:
N = 1
O = 3
but we have two moles of NO₃
O = 3 x 2 = 6
N = 1 x 2 = 2
learn more:
Number of atoms brainly.com/question/10419836
#learnwithBrainly