Answer:
20
Step-by-step explanation:
Answer:
x = 6
Step-by-step explanation:
4(x + 4) = 5(3 + 5) => Intersecting Secants Theorem
4(x + 4) = 5(8)
Open the bracket
4x + 16 = 40
Subtract 16 from each side
4x + 16 - 16 = 40 - 16
4x = 24
4x/4 = 24/4
x = 6
Answer:
13 over 3
Step-by-step explanation:
Hi Jakeyriabryant! I hope you’re fine!
I hope I have understood the problem well.
If so, what the exercise raises is the following equality:
(x-1) / 5 = 2/3
From this equation you must clear the "x".
First, we pass the 5 that is dividing on the side of the x, to the other side and passes multiplying
(X – 1) / 5 = 2/3
(X – 1) = (2/3)*5
X – 1 = 10/3
Then we pass the one that is subtracting from the side of the x, to the other side and passes adding
X = 10/3 + 1
Remember that to add or subtract fractions they must have the same denominator or a common denominator (in this case we can write 1 as fraction 3/3). Then,
X = 10/3 + 3/3
X = 13/3
I hope I've been helpful!
Regards!
Answer:
False
Step-by-step explanation:
Let p1 be the population proportion for the first population
and p2 be the population proportion for the second population
Then
p1 = p2
p1 ≠ p2
Test statistic can be found usin the equation:
where
- p1 is the sample population proportion for the first population
- p2 is the sample population proportion for the second population
- p is the pool proportion of p1 and p2
- n1 is the sample size of the first population
- n2 is the sample size of the second population.
As |p1-p2| gets smaller, the value of the <em>test statistic</em> gets smaller. Thus the probability of its being extreme gets smaller. This means its p-value gets higher.
As the<em> p-value</em> gets higher, the null hypothesis is less likely be rejected.
Answer: The average rate of change is 6.First, plug in each value of <em>t</em> into the function, v(t) to find there coordinate pairs.
v(2) = (2)^2 - (2) + 10
v(2) = 4 + 8
v(2) = 12
v(5) = (5)^2 - (5) + 10
v(5) = 25 + 5
v(5) = 30
You can write these values as coordinate pairs, like so: (2, 12) and (5, 30).
The formula for the average rate of change is

. When you plug in the values from this particular case, the average rate of change formula becomes

, or

.
Looking at the equation, you can solve for the average rate of change between t = 2 and t = 5, which equals
6.