This is an example of the commutative property of multiplication.
That property states: 

So using that property, we can figure out that 
3 should be in the blank.
 
        
        
        
Answer:
 $35,75
Step-by-step explanation:
55 . 35 / 100 = 19,25 
55 - 19,25 = 35,75
 
        
             
        
        
        
Answer:
12y + 120
Step-by-step explanation:
<u>First of, what is the distributive property?</u>
The distributive property is the property that helps distribute numbers under the parenthesis. 
For example, lets use {x+1}4. You distribute the 4 towards the x and the one like this:
4(x) + 1(4)
4x + 4 
Now, let's go back to your problem
<u>Solution:</u>
{y+10}12 
12(y) +12(10) 
= 12y + 120
<em>Hope this helps! Make sure to give me the brainliest answer since it would be greatly appreciated! Thank You! </em>
 
        
                    
             
        
        
        
Answer:
Step-by-step explanation:
Whether we divide using long division or using synthetic division, the rule is the same:  If, after division, there is no remainder (i. e., the remainder is zero), the divisor binomial is a factor or the associated root is indeed a root/zero/solution.
Divide 5x³+8x²-7x-6 by (x+2) using synthetic division.  Use the divisor -2 (which comes from letting x+2 = 0):
       --------------------------
-2   /    5    8    -7    -6
                 -10    4     6
      ------------------------------
           5      -2    -3    0          Since the remainder here is 0, we know that
                                                -2 is a root of 5x³+8x²-7x-6 and that (x+2) is 
                                                 a factor of 5x³+8x²-7x-6.
Now check out the possibility that (x+1) is a factor of  5x^3 + 8x^2 - 7x - 6:
Use -1 as the divisor in synthetic division:     
         --------------------------
-1   /    5    8    -7    -6
                 -5   -3     10
      ------------------------------
           5      3   -10    4         
Since there is a non-zero remainder (4), we can conclude that (x + 1) is NOT a factor of the given polynomial expression.