Answer: Yes, H is a subspace of V
Step-by-step explanation:
We know that V is the space of all the 2x2 matrices with real entries.
H is the set of all 2x2 matrices with real entries that have trace equal to 0.
Obviusly the matrices that are in the space H also belong in the space V (because in H you have some selected matrices and in V you have all of them). The thing we need to prove is if H is an actual subspace.
Suppose we have two matrices that belong to H, A and B.
We must see that:
1) if A and B ∈ H, then (A + B)∈H
2) for a scalar number k, k*A ∈ H
lets write this as:
![A = \left[\begin{array}{ccc}a1&a2\\a3&a4\\\end{array}\right] B = \left[\begin{array}{ccc}b1&b2\\b3&b4\\\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da1%26a2%5C%5Ca3%26a4%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%20B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db1%26b2%5C%5Cb3%26b4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
where a1 + a4 = 0 = b1 + b4
then:
![A + B = \left[\begin{array}{ccc}a1 + b1&a2 + b2\\a3 + b3&a4 + b4\\\end{array}\right]](https://tex.z-dn.net/?f=A%20%2B%20B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da1%20%2B%20b1%26a2%20%2B%20b2%5C%5Ca3%20%2B%20b3%26a4%20%2B%20b4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
the trace is:
a1 + b1 - (a4 + b4) = (a1 - a4) + (b1 - b4) = 0
then the trace is nule, and (A + B) ∈ H
and:
![kA = \left[\begin{array}{ccc}k*a1&k*a2\\k*a3&k*a4\end{array}\right]](https://tex.z-dn.net/?f=kA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dk%2Aa1%26k%2Aa2%5C%5Ck%2Aa3%26k%2Aa4%5Cend%7Barray%7D%5Cright%5D)
the trace is:
k*a1 - k*a4 = k(a1 - a4) = 0
so kA ∈ H
then H is a subspace of V