Answer:
Level term and decreasing term
Step-by-step explanation:
level- Death benefit stays the same during the course of the policy term.
term-death benefit drops usually in one year increments over the course of the policy term.
Answer:
<h3>The nth term
Tn = -8(-1/4)^(n-1) or Tn = 6(1/3)^(n-1) can be used to find all geometric sequences</h3>
Step-by-step explanation:
Let the first three terms be a/r, a, ar... where a is the first term and r is the common ratio of the geometric sequence.
If the sum of the first two term is 24, then a/r + a = 24...(1)
and the sum of the first three terms is 26.. then a/r+a+ar = 26...(2)
Substtituting equation 1 into 2 we have;
24+ar = 26
ar = 2
a = 2/r ...(3)
Substituting a = 2/r into equation 1 will give;
(2/r))/r+2/r = 24
2/r²+2/r = 24
(2+2r)/r² = 24
2+2r = 24r²
1+r = 12r²
12r²-r-1 = 0
12r²-4r+3r -1 = 0
4r(3r-1)+1(3r-1) = 0
(4r+1)(3r-1) = 0
r = -1/4 0r 1/3
Since a= 2/r then a = 2/(-1/4)or a = 2/(1/3)
a = -8 or 6
All the geometric sequence can be found by simply knowing the formula for heir nth term. nth term of a geometric sequence is expressed as
if r = -1/4 and a = -8
Tn = -8(-1/4)^(n-1)
if r = 1/3 and a = 6
Tn = 6(1/3)^(n-1)
The nth term of the sequence above can be used to find all the geometric sequence where n is the number of terms
Answer:
7 miles in all
Step-by-step explanation:
1
5.5
+1.5
= 7.0
The Area of the platform is 33m²
Step-by-step explanation:
As the question says, the height of vertex from the base (D from AB) is 7m whereas the height of left vertex from the base (E from AB) is 4m
Thus it means the height of the Δ DCE (DX)= 7-4 ⇒3m
Since the platform is five-sided, the figure can be broken down into constituting parts
- Parallelogram ║ABCE
- Δ DCE
Are of the figure= Area of ║ABCE+ area Δ DCE
Area of ║ABCE= breadth * height
= 6*4 ⇒24m
²
Area Δ DCE= ½*(base)(height)
Putting the value of base is 6m and height as 3m
Area Δ DCE= ½*6*3
=9m
²
Total area= 24+9= 33m
²
Answer:
see the procedure
Step-by-step explanation:
Remember that

To convert feet to inches multiply by 12

To convert minutes to seconds multiply by 60
we have
