Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
Here is the answer. Two sources of Earth's energy that are not produced would be Cosmic rays and Tidal Energy. Cosmic rays <span>are high-energy protons and atomic nuclei that come from outside the solar system. Whereas, tidal energy is the energy produced by both the moon (2/3) and the sun (1/3). Hope this answers your question.</span>
Answer: The ice cube would float on top of the water and the rock would sink to the bottom.
Explanation: The ice cube has a smaller density than the rock which allows the ice cube to float but makes the rock sink to the bottom of the glass of water.
Answer:
Induced emf, 
Explanation:
Given that,
Length of the helicopter, l = 4 m
Angular speed of the helicopter, 
The vertical component of the Earth’s magnetic field is, 
We need to find the induced emf between the tip of a blade and the hub. The induced emf in terms of angular velocity of an rotating object is given by :



So, the induced emf between the tip of a blade and the hub is
. Hence, this is the required solution.