Answer:

Explanation:
The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

In this case, we have
:

Λ= V/f
<span>but change it to represent the speed of light, c </span>
<span>λ= c/f </span>
<span>c = 3.00 x 10^8 m/s </span>
<span>Plug in your given info and solve for λ(wavelength) </span>
<span>λ= 3.00 x 10^8 m/s / 7.5 x 10^14 Hz
(3.00 x 10^8) / (7.5 x 10^14) = 300,000,000 / 750,000,000,000,000 = 0.0000004
Hope this helps :)
</span>
Answer:
Well if you want to be sure you should just throw it to the ground so then when he lands he can catch it.
If the cannon throws the banana with the same force the monkey falls
(m.g=Fz <=> m.9,81N/kg=...N).
Then the throw will slow down because of the gravitational pull.
Because the banana cannon is selfmade you can choose what mass the bananas in question have, so let that be the same as the monkeys.
The monkey falls with the speed of 9,81m.s => so it takes the monkey 7,1s to land.
If the cannon can shoot the banana at the same speed the monkey falls then they would cross in the middle.
So to do so you need to throw the bananas with a speed of at least 9,81m.s
Soo ... throw them with a force of that is greater then the gravitational pull and things will work out.
I'm sorry I don't know why I wrote all of this irrelevant information it's 2:21 right now and I'm tired.
kind regards
This is a diagram from above, the air resistance is oppose to movement, the bird is moving forward given its force is bigger.
The net force acting on the car is 3 which slows the car down.